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An air–water coupled model is developed to investigate wind-wave generation
processes at low wind speed where the surface wind stress is about 0.089 dyn cm−2 and
the associated surface friction velocities of the air and the water are u∗

a ∼ 8.6 cm s−1

and u∗
w ∼ 0.3 cm s−1, respectively. The air–water coupled model satisfies continuity

of velocity and stress at the interface simultaneously, and hence can capture the
interaction between air and water motions. Our simulations show that the wavelength
of the fastest growing waves agrees with laboratory measurements (λ∼ 8–12 cm) and
the wave growth consists of linear and exponential growth stages as suggested by
theoretical and experimental studies. Constrained by the linearization of the interfacial
boundary conditions, we perform simulations only for a short time period, about
70 s; the maximum wave slope of our simulated waves is ak ∼ 0.01 and the associated
wave age is c/u∗

a ∼ 5, which is a slow-moving wave. The effects of waves on turbulence
statistics above and below the interface are examined. Sensitivity tests are carried out
to investigate the effects of turbulence in the water, surface tension, and the numerical
depth of the air domain. The growth rates of the simulated waves are compared to a
previous theory for linear growth and to experimental data and previous simulations
that used a prescribed wavy surface for exponential growth. In the exponential growth
stage, some of the simulated wave growth rates are comparable to previous studies,
but some are about 2–3 times larger than previous studies. In the linear growth stage,
the simulated wave growth rates for these four simulation runs are about 1–2 times
larger than previously predicted. In qualitative agreement with previous theories for
slow-moving waves, the mechanisms for the energy transfer from wind to waves
in our simulations are mainly from turbulence-induced pressure fluctuations in the
linear growth stage and due to the in-phase relationship between wave slope and
wave-induced pressure fluctuations in the exponential growth stage.

1. Introduction
As wind flows over a water surface, air and water motions interact and induce many

phenomena at the interface. Wind-generated waves are the most visible signature of
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this interaction and have a major influence on the momentum and energy transfer
across the interface. These wind-generated waves, observed by microwave-radar
backscatter, have wavelengths of the order of 4–40 cm (Massel 1996). Because these
small-scale waves impact remote sensing of the sea surface, the generation and
growth of wind-generated waves have been subjects of much research. However,
the mechanisms that generate these surface waves are still an open issue owing to
(i) difficulties in obtaining a dataset from laboratory and field measurements that
records the time evolution of motions in both atmosphere and ocean domains;
(ii) mathematical difficulties in dealing with highly turbulent flows over complex
moving surfaces; and (iii) lack of a suitable coupled model to simulate turbulent
flows in both atmosphere and ocean simultaneously. With increases in computer
power, it is now possible to simulate wave and turbulence phenomenon by direct
numerical simulation (DNS). DNS numerically solves the Navier–Stokes equation
subject to boundary conditions, and hence such simulated flow fields contain no
uncertainties other than numerical errors. In this study, we develop an air–water
coupled DNS model and use it to study wind-wave generation and growth processes.

Theoretical studies (Jeffreys 1925; Miles 1957; Phillips 1957, 1977; Phillips & Katz
1961; Townsend 1972, 1980; Jacobs 1987; Kahma & Donelan 1988; van Duin &
Janssen 1992; Belcher & Hunt 1993, among many others) have proposed different
mechanisms as to how surface waves are generated from calm water and quantify the
consequential growth rate of surface waves. These studies suggest that there are linear
and exponential growth regimes for surface waves. Most of the previous numerical
studies (Davis 1970; Gent & Taylor 1976; Al-Zanaidi & Hui 1984; De Angelis,
Lombardi & Banerjee 1997; Henn & Sykes 1999; Sullivan, McWilliams & Moeng
2000; Tsai, Chen & Moeng 2005) examine either the wave effect on air motions or
the wind stress effect on water motions by simulating only air or water flows (i.e.
one-phase flow). Only a few numerical studies are conducted for two-phase flows
(Lombardi, De Angelis & Banerjee 1996; De Angelis 1998; Fulgosi et al. 2003), but
none of them investigate the wind-wave generation processes. The present study,
therefore, is aimed at unravelling wind-wave generation processes by conducting
direct numerical simulations that couple turbulent air and water flows.

The organization of this paper is as follows. The numerical aspects of the present
simulation, including the model formulation, numerical method and simulation
implementation are described in § 2. The simulated flow structures of surface waves
and elongated streaks generated by wind are shown in § 3. The wave effect on the
statistics of mean velocity and turbulent intensity is reported in § 4. The characteristics
of the generated surface waves are examined in § 5. Two wave growth types are defined
in § 6. Comparison with theoretical wind-wave generation mechanisms is given in § 7.
The effects of turbulence in the water, surface tension, and the numerical domain in
the air side on wave growth are examined in § 8. Finally, the main conclusions of this
paper are reported in § 9.

2. The coupled model
2.1. Flow configuration

We consider two turbulent flows (air and water) interacting across a deformable
interface under a wind-driven system. Each domain of the two immiscible fluids is
a rectangular box with a depth h and horizontal length (Lx, Ly) = 6h (figure 1). We
adopt a Cartesian coordinate where the air region occupies the z � 0 domain, and
the water region the z � 0 domain. The horizontal coordinates x and y are in the
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Figure 1. Numerical domain of two immiscible turbulent flows driven by velocity U0 on a
Cartesian coordinate. The interface of air and water is located at z= 0. The size of air and
water sub-domains is the same,

(
Lx,Ly, h

)
= (6, 6, 1)h.

streamwise and spanwise directions, respectively. The external forcing of the system
is a constant velocity U0 imposed at the upper boundary (z = h) in the air region, i.e.
similar to a Couette flow. We set U0 = 3 m s−1 in this study.

2.2. Governing equations

The mass and momentum conservation equations for incompressible, Newtonian
fluids of air and water with density ρ� and kinematic viscosity ν� are

∇ · u� = 0, (2.1)

∂u�

∂t
+ u� · ∇u� = − 1

ρ�

∇p� + ν�∇2u�, (2.2)

where the subscript � denotes variables in air (� = a) or water (� = w), u =(u, v, w)
are velocity components in streamwise, spanwise and vertical directions, respectively,
and p� is the pressure.

The Poisson equation for p� is obtained by taking the divergence of (2.2) and using
(2.1)

∂2p�

∂x2
+

∂2p�

∂y2
+

∂2p�

∂z2
= H�, (2.3)

where the source term H� is the divergence of the convective and diffusive terms in
(2.2). The solution of (2.3) forces the continuity equation (2.1) to be satisfied at each
time step.

2.3. Boundary conditions

The domains of the two immiscible fluids have six external boundaries and one internal
deformable interface. For external boundaries, periodic conditions are assumed on
the four sidewalls of the computational domain. At the top of the domain, z =h, a
constant-velocity condition is applied as

ua = U0, va = 0, wa = 0,
∂pa

∂z
= 0. (2.4)
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At the lower bottom of the water region, z = −h, we impose free-slip boundary
conditions

∂uw

∂z
= 0,

∂vw

∂z
= 0, ww = 0,

∂pw

∂z
= 0, (2.5)

to emulate an infinite depth.
For the deformable interface between the air and water, continuity of velocity,

tangential and normal stresses is required across the boundary z = η(x, y, t) (Wehausen
& Laitone 1960). Without simplification, these requirements lead to complicated
boundary conditions (see equations 3.2–3.6 in Wehausen & Laitone 1960). However,
assuming small interfacial deformation where the ratio of wave amplitude to
wavelength is smaller than 0.01, as in the initial wind-wave generation processes
considered here, we can linearize the interfacial conditions (Tsai & Yue 1995), which
yields boundary conditions satisfied at z = 0 as follows:

ua = uw, va = vw, wa = ww, (2.6)

μa

(
∂ua

∂z
+

∂wa

∂x

)
= μw

(
∂uw

∂z
+

∂ww

∂x

)
, (2.7)

μa

(
∂va

∂z
+

∂wa

∂y

)
= μw

(
∂vw

∂z
+

∂ww

∂y

)
, (2.8)

pw − ρwgη + 2μw

(
∂uw

∂x
+

∂vw

∂y

)

− pa + ρagη − 2μa

(
∂ua

∂x
+

∂va

∂y

)
= −γ

(
∂2η

∂x2
+

∂2η

∂y2

)
, (2.9)

where μa ≡ ρaνa and μw ≡ ρwνw are dynamic viscosities of air and water, and γ is the
surface tension of the water interface. The linearized kinematical condition satisfied
at z = 0 is

∂η

∂t
+

∂(uη)

∂x
+

∂(vη)

∂y
= w. (2.10)

The use of a central-differencing scheme at the interface requires additional
points (ghost points) below the interface for (ua, va, wa, pa) and above the interface
for (uw, vw, ww, pw) (figure 2). The (ua, va, uw, vw) values at the ghost points are
determined using the continuity conditions for velocity (2.6) and tangential stresses
((2.7) and (2.8)). (wa, ww) at the ghost points are determined by two additional
conditions. (i) Applying the continuity equation (2.1) and the boundary conditions
(2.6) at z = 0 results in the condition

∂wa

∂z
=

∂ww

∂z
. (2.11)

(ii) A second condition is obtained by adding the x-derivative of (2.7) and the
y-derivative of (2.8) (Chandrasekhar 1954), leading to

μa

(
∂2wa

∂x2
+

∂2wa

∂y2
− ∂2wa

∂z2

)
= μw

(
∂2ww

∂x2
+

∂2ww

∂y2
− ∂2ww

∂z2

)
. (2.12)

The pressure (pa, pw) at the ghost points is determined by applying the normal stress
condition (2.9) and the continuity condition for the vertical velocity (2.6) to the
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Figure 2. Location of velocity components and pressure on staggered grid systems for the
mixed finite-differencing and pseudospectral scheme. Symbols with solid circle and cross are
ghost points at the interface.

vertical component of the momentum equation at the interface, which results in

− 1

ρa

∂pa

∂z
− ∂(uawa)

∂x
− ∂(vawa)

∂y
− ∂(wawa)

∂z
+ νa

(
∂2wa

∂x2
+

∂2wa

∂y2
+

∂2wa

∂z2

)

= − 1

ρw

∂pw

∂z
− ∂(uwww)

∂x
− ∂(vwww)

∂y
− ∂(wwww)

∂z
+ νw

(
∂2ww

∂x2
+

∂2ww

∂y2
+

∂2ww

∂z2

)
.

(2.13)

2.4. Numerical method

The numerical method used to solve the system of equations (2.2) and (2.3) subject to
the boundary conditions (2.4)–(2.10) is based on the scheme described by Tsai (1998)
and Tsai et al. (2005). We use a staggered grid in the vertical as shown in figure 2
where the grids are stretched with finer resolution near the interface, as in Tsai et al.
(2005). We use a pseudospectral method to evaluate x- and y-derivatives, second-order
finite-difference scheme for z-derivatives, and a second-order Runge–Kutta method
(Spalart, Moser & Rogers 1991) for time integration.

We use (Nx, Ny, Nz) = (64, 64, 65) gridpoints in each of the air and water domains.
The domain size in both x- and y-directions is 24 cm. In the water, the horizontal
grid size in wall units is �x+

w =�y+
w = �ywu∗

w/νw = 11.25, where the water friction
velocity u∗

w is given in § 2.5. Near the interface, the stretched vertical grid adequately
resolves the viscous layer. There are 14 grids in the near-surface region (−z+

w � 10).
In the air domain, the corresponding non-dimensional horizontal spacings are
�x+

a = �y+
a = 21.4, and there are 10 gridpoints within the region z+

a � 10 in the
vertical direction near the interface.

As suggested by Moin & Mahesh (1998), the grid resolution requirements for
the spectral method of boundary-layer flow in x (streamwise) and y (spanwise)
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Figure 3. Time evolution of the mean wind stress τs at the interface.

and second-order central difference scheme in z are (�x, �y, �z) = (14.3, 4.8, 0.26)ξ
where ξ = (ν3

a/ε)
1/4 is the Kolmogorov microscale, ε ∼ υ3/h is the dissipation rate and

υ = (u′2
a + v′2

a + w2
a)

1/2 is the root-mean-square fluctuating speed. For our grid system,
the Kolmogorov microscale is ξ ∼ 0.025 cm, the horizontal spacing is 0.375 cm and
the vertical spacing near the interface is about 0.01 cm. This spatial resolution is close
to the requirements suggested by Moin & Mahesh (1998).

The non-dimensional time step is 0.005 where characteristic length and velocity are
4 cm and 300 cm s−1, respectively.

2.5. Initialization

The simulation flow field is initiated in four steps. (i) We assign the mean velocity
profile of the coupled air–water flow based on the analytical solution of laminar
transient flow (Choy & Reible 2000) at the time when the mean velocity at the
interface reaches 8 cm s−1. (ii) We spin up the turbulence by adding small random
perturbations in the air and water temperature fields to the buoyancy force in the
w momentum equation. (The buoyancy force induces a quick spin-up to a turbulent
state.) For this air–water coupled model, it takes about 120 large-eddy turnover
time units (U0t/h) to spin up the turbulence. (iii) We turn off the buoyancy force
in the w momentum equation and continue the spin-up simulation for another 2400
large-eddy turnover time units to reach a pure shear-driven state. The criterion
for established pure shear-driven flow is determined by comparing the near-surface
velocity variances in the air and water domains to the shear turbulent flow above a
flat boundary reported in Sullivan et al. (2000) and the shear-driven turbulent water
flow in Tsai et al. (2005). Finally, we start our simulation from this fully developed
shear-driven turbulent flow by allowing the flat interface to deform. All results shown
below are from this final stage.

Figure 3 shows the time evolution of the mean shear stress τs at the interface after
the interface is allowed to evolve. For the time interval t < 50 s, the mean interfacial
stress τs remains at a nearly constant value of 0.089 dyn cm−2, implying that our
simulation has reached a statistically quasi-steady state in response to the wind forcing.
The associated friction velocities in the air and water are u∗

a =
√

τs/ρa ≈ 8.56 cm s−1

and u∗
w =

√
τs/ρw ≈ 0.3 cm s−1, respectively. The ratio of u∗

a/U0 is hence about 0.03.
For t > 50 s, the mean interfacial stress smoothly increases owing to the growth of
surface waves. We discuss the properties of the generated waves in § 6.
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Figure 4. Vertical profiles of dimensionless mean vertical turbulent flux −〈u′
aw

′
a〉/(u∗

a)
2 (thick

dashed line), viscous flux (νa/u
∗
ah)∂Ua/∂z (thick dash-dotted line), and their sum (thick solid

line) in the air. The thin lines represent these terms at various time instances from 50 to 70 s,
while the thick lines are their averages.

The total u momentum flux in the air is

νa

∂Ua

∂z
− 〈u′

aw
′
a〉 = u∗

a. (2.14)

Figure 4 shows the vertical distributions of viscous, turbulence, and total momentum
flux. As required for a Couette flow under a steady condition, the total mean vertical
momentum flux is nearly constant with height.

The bulk Reynolds number of the air flow (Rea ≡ U0h/νa) is about 8000. This
value is the same as that in the turbulent Couette flow simulation of Sullivan et al.
(2000). The simulated turbulence, therefore, is considered to be fully developed. The
associated wall Reynolds number (Re∗

a ≡ u∗
ah/2νa) is about 115. Our wall Reynolds

number is about 12 % less than that of Sullivan et al. (2000). In the water, the bulk
Reynolds number (Rew ≡ Ush/νw) is about 2000, where Us ≈ 10 cm s−1 is the mean
velocity at the interface. The corresponding wall Reynolds number (Re∗

w ≡ u∗
wh/2νw)

is about 60, which is comparable to that in the simulations reported by Lombardi
et al. (1996) and Tsai et al. (2005).

3. Flow visualization
3.1. Waves and streaks

Waves and streaks are frequently observed phenomena at the air–water interface; they
are also found in our numerical simulations. Figure 5 shows contour distributions
of the interface elevation η(x, y, t) and the streamwise velocity uw(x, y, z =0, t) at
three representative time instances t = 2.6, 16 and 66 s. The results show that the
surface waves grow in time in our simulation (figure 5a–c). High-speed streaks are
observed before the initiation of surface waves (figure 5d, e). When the wave motion
is weak, the structure of the high-speed streaks (figure 5d) is similar to that observed
by Tsai et al. (2005) in which a stress-driven free-surface turbulent shear flow is
considered. Low-speed streaks in the air flow near the interface (figure 6a) are also
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Figure 5. Snapshots of the instantaneous water surface elevation η (a–c) and streamwise
velocity u at the interface (d–f ) at time t =2.6 s, 16 s and 66 s (from top to bottom), respectively.
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Figure 6. Snapshots of the instantaneous streamwise velocity ua within the viscous sublayer
of the air domain at time (a) t = 2.6 s and (b) 66 s.

observed. The low-speed streaky structure is similar to that commonly observed in a
turbulent boundary layer next to a stationary no-slip boundary (e.g. Kim, Moin &
Moser 1987). When the wave motion becomes significant, the streaky velocity pattern
shown in figure 5(e) is disrupted and now figure 5(f) reveals a waveform pattern that
is embedded upon the streaky pattern, that is, the velocity now has relatively larger
values along the wave crests around x = 5, 15 and 23 cm. Similarly, the streamwise
velocity within the viscous sublayer on the air side (figure 6b) is also re-organized into
waveform. However, the wave-induced motions in the air have a phase shift with the
surface waves so figure 6(b) shows relatively weaker winds along x = 7 cm and 17 cm.

Figure 7 shows isosurfaces of the vertical velocity in the water at two representative
time instances before and after the generation of the surface waves. When surface
waves are weak, as shown in figure 7(a), the flow is shear dominated and the
distributions of ejections and sweeps are irregular. However, when the flow becomes
wave dominated, the vertical velocity distributions align with the waves (figure 7b).

In the air side, the wave effect on the air velocity field is not as significant as that
in the water and confined to within the viscous sublayer as shown in figure 8(a–c).
However, for the air pressure field (figure 8d–f), the wave effect can extend outside
the viscous sublayer when the interface is wave dominated. These different responses
of the velocity and the pressure fields to the surface waves were also observed by
Sullivan et al. (2000).

3.2. Pressure and stress fields

Figure 9 shows two representative distributions of the fluctuating air and water
pressures, p′

a and p′
w , at the interface, and the distribution of surface-wave elevations.

At the early stage when surface waves are weak, pressure fluctuations in the air do
not show any pattern similar to the surface-wave elevations (comparing figures 9a
with 9b), but comparing figures 9(c) and 9(b) we can see a similar pattern between the
pressure fluctuations in the water and the surface-wave elevations even at t = 16 s. This
suggests that in the early stage of wind-wave generation, pressure fluctuations in the
water are driven almost passively by surface waves, and the turbulence in the water
may not play an important role in generating waves. In § 8, a numerical experiment
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Figure 7. Representative iso-surfaces of vertical velocity in the water at time (a) t = 2.6 s
and (b) 66 s. Black and grey iso-surfaces show vertical velocity speed of −1.5 cm s−1 and
+1.5 cm s−1, respectively.

is designed to test the impact of water turbulence on wind-wave generation processes.
When wave motions dominate (figure 9d–f), we observe that both the pattern of
pressure fields (figure 9d, f ) are similar to the waveform. At this stage, the air
pressure fluctuations show a slight phase shift relative to the surface waves, and the
region of maximum (minimum) pressure occurs on the backward (forward) face of
the surface wave near the crest (trough), as observed by Sullivan et al. (2000). Belcher,
Newley & Hunt (1993) term this phenomenon non-separated sheltering. Also, the
pressure fluctuations in the air (figure 9d) are less regular than those in the water
(figure 9f), implying that the pressure fluctuations in the air are more turbulence
induced than wave induced.

Figure 10 shows shear stress fluctuations at the interface at early (figure 10a) and
late (figure 10b) stages of wave growth. Similar to the pressure field in the air, the
shear stress field reveals a wave-induced component only when the waves become
strong. The wave-induced shear-stress fluctuations also exhibit a phase shift relative
to the surface-wave elevations.

The wave effect on the pressure fields in the vertical direction can also be seen in
the vertical distributions of pressure fluctuations at t = 16 s (figure 11a–c) and 66 s
(figure 11d–f ). At t = 66 s, pressure fluctuations in the air and water are influenced by
waves, and the wave effect extends outside the viscous sublayer. At t = 16 s, pressure
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Figure 8. Snapshots of the instantaneous streamwise velocity (a–c) and pressure fluctuations
(d–f ) of the air flow in (x, y)-planes at t = 66 s at three different heights. (a), (d) are within
the viscous sublayer z = 0.045 cm, (b), (e) are in the matched layer z = 0.23 cm, and (c), (f ) are
in the inertial sublayer z = 0.37 cm.
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Figure 9. Snapshots of the instantaneous pressure fluctuations in the air p′
a (a, d) and water

p′
w (c, f ), and water surface elevation η (b, e) on the interface at time (a–c) t = 16 s and

(d–f ) 66 s.

fluctuations in the air show no similarity to the surface wave motions, but the pressure
fluctuations in the water already follow the wave pattern. Simultaneous animations
of η and p′

a show that at early time, pressure fluctuations in the air usually sweep
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Figure 10. Snapshots of the instantaneous shear stress fluctuations τ ′
s at the interface at time

(a) t = 16 s and (b) 66 s.

over the water surface with varying speeds higher than the phase velocity of the wave
motions, but at late time, the convection speed of p′

a is the same as the phase velocity
of the surface waves. This suggests different wave-generation processes at early and
late times. We will discuss this in more detail in § 7.

4. Characteristics of the surface waves
Figure 12 shows the wavenumber spectra of surface elevation at t = 2.6, 16 and

66 s. At the beginning of the simulation (t = 2.6 s) when the water-surface elevation
is randomly distributed (figure 5a), the spectrum shows no significant energy in the
low-wavenumber range (figure 12a). As waves begin to form at t = 16 s (figure 5b), the
wave energy is more or less evenly distributed at certain selected wave components
(figure 12b). When waves become strong at t = 66 s (figure 5c), wave energy is
concentrated in a few small-wavenumber components (figure 12c). Table 1 gives
the five largest energy-containing components at early (t ∼ 16 s) and late (t ∼ 66 s)
stages. At early time, the fraction of energy in each component is low and rather
evenly distributed. At a later stage, about 80 % of wave energy is possessed by three
wave components. These fastest growing waves are (kx , ky) = (0.78, 0), (0.78, 0.26)
and (0.52, 0) cm−1. Their associated wavelengths are in the range of 8 to 12 cm,
close to those found by Kahma & Donelan (1988) in their laboratory experiment.
The wavenumber–frequency spectrum of the surface-wave elevations are plotted in
figure 13 for the time interval t =66–66.5 s. It shows that the frequency of the most
energetic wave component (kx, ky) = (0.78, 0) cm−1 is 36.9 s−1, which agrees with the
linear dispersion relation for a propagating gravity wave (dashed line in figure 13).

We compare the wavelength found here and those found in previous experimental
studies as follows. Caulliez & Collard’s (1999) experiments show that wave motions
have five distinct regimes depending on wavelength and steepness in the wind-wave
generation processes. They split these five regimes into two categories according to
the wind speed: one for low wind speeds (U < 4 m s−1) and the other for higher wind
speed (U > 4 m s−1). For the first category at low wind speeds, the wavelengths of
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(x, z)-plane and the associated water surface elevation η at time (a–c) t =16 s and (d–f) 66 s.
The cross-section is located at y = 18 cm in figure 9. η is normalized by its maximum value at
this time.

initial waves (the first visible waves) are within the range of 4 to 10 cm and no
waves smaller than 4 cm can be generated. Many kinds of wave pattern can be found
in the second category. One of them is the longer gravity waves superimposed by
short-crested capillary waves with wavelengths usually between 0.5 and 1 cm. Plate,
Chang & Hidy (1969) also observed these two categories of waves in their wind-wave
tank when the steady wind is gradually increased in speed. They interpreted this
phenomenon as ‘The first waves, near critical wind speeds, are smooth undulations,



Direct numerical simulation of wind-wave generation processes 15

Wavenumber κ = (kx , ky) (cm−1) Φ(kx , ky)/〈η2〉

t ∼ 16 s (1.0, 1.0) 6.5 %
(1.0, 0.0) 6.1 %
(0.26, 1.0) 5.9 %
(0.52, 0.52) 5.0 %
(0.52, 0.0) 4.7 %

t ∼ 66 s (0.78, 0.0) 28.0 %
(0.78, 0.26) 24.7 %
(0.52, 0.0) 24.5 %
(0.52, 0.26) 7.2 %
(1.0, 0.26) 3.3 %

Table 1. Dominant waves and the percentage of each wave energy at early (t ∼ 16 s) and late
(t ∼ 66 s) stages for the control case. Note that the dominant waves at these two stages are
different. Φ(kx , ky) is the wave energy of the selected wave component.

kx (cm–1)

k y
 (

cm
–
1
)

0 1 2

1

2
0.003 0.03

(a)

kx (cm–1)

0 1 2

1

2
0.005 0.06

(b)

kx (cm–1)

0 1 2

1

2
0.001 0.08

(c)

Figure 12. Wavenumber spectra of water surface elevation η̂(kx, ky) (normalized by its total
energy) at time (a) t = 2.6 s, (b) 16 s and (c) 66 s. Note that the maximum contour level in (c) is
higher than that in (a) and (b). The resolution of wavenumber spectra in x- and y-directions
is about 0.26 cm−1.

two-dimensional in appearance, which are oriented with crest nearly perpendicular
to the direction of flow. As the wind speed increases, the water surface becomes
somewhat more ruffled. Short-crested capillary ripples are superimposed over the first
undulations and a rhombic wave pattern develops.’ Based on these two studies, we
classify waves found from other experiments as follows.

Kahma & Donelan’s (1988) experiments at low wind speeds (lower than 4 m s−1)
show that wavelength of the fastest growing waves is about 7–10 cm, and their
frequency spectrum has only one energy peak at low frequency; no bi-modal shape
is found. These waves belong to Caulliez & Collard’s (1999) first category.

Veron & Melville’s (2001) experiment exhibits a bi-modal shape in the saturation
spectrum at the wind speed of 5 m s−1; this characteristic is caused by parasitic
capillary waves (λ∼ 0.78 cm) riding on the longer gravity waves (λ∼ 12.5 cm), and
hence belongs to the second category classified by Caulliez & Collard (1999). Kawai
(1979) set up the experiment at high wind speeds (wind speeds larger than 4 m s−1) and
found that the wavelengths of initial wavelets are less than 4 cm, which also belong to
the second category according to Caulliez & Collard. Larson & Wright (1975) used
microwave backscatter to measure the growth rates of wind-induced water waves at
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Figure 13. Wavenumber–frequency spectrum of the water surface elevation η̂(kx, σ )
(normalized by its total energy) at time interval t = 66–66.5 s for ky = 0. The dashed line

represents the linear dispersion relation σ/kx = Us +
√

g/kx where Us = 12 cm s−1 is the mean
surface current. Even though the deep-water wave approximation is not suitable for the
wave component of kx =0.52 cm−1, we approximated the dispersion relation σ 2 = gk tanh kh
to σ 2 = gk for this wave component; the error due to this approximation is within 5 %. The
resolutions of wavenumber and frequency are 0.26 cm−1 and 14.8 s−1, respectively.

high wind speeds in a laboratory wave tank. Since longer waves grew more slowly,
they neglected the longer waves in the initial stages of Bragg wave growth and focused
their study on waves at wavelengths of 0.7–7 cm. We also classify these smaller waves
riding on longer waves in the second category of Caulliez & Collard (1999).

The waves reported in this paper have wavelengths in the range of 8–12 cm, and
show no bi-modal shape in the energy spectra. Thus, our waves belong to Caulliez &
Collard’s (1999) first wave category. However, we did observe some wavelengths less
than 4 cm in our simulation when the surface wave slope became steep and the
nonlinear effect began to dominate the wave growth process. Figure 14 shows the
wave slope and curvature of surface waves at time t = 56 and 69 s that reveal
the existence of small ripples near time t =69 s. However, because of the use of a
linearlized interfacial boundary condition, we restrict our discussion to the simulation
before the nonlinear effect becomes significant.

5. Wave effect on mean velocity profiles and turbulence intensities
Surface waves at the air–sea interface have significant effects on the mean velocity

profiles of air and water flows (Sullivan el al. 2000; Cheung & Street 1988; Howe
et al. 1982). To examine the wave effect on the mean velocity profiles, we compare
the air and water mean velocity profiles in our simulation with the two-layer velocity
profile of a wall turbulent boundary layer

U+ = z+, (5.1)

within the viscous sublayer, and

U+ =
1

κ
ln z+ + b ≡ 1

κ
ln

z+

z+
0

, (5.2)

in the inertial layer, where κ is the von Kármán constant, b is a constant related to
the surface roughness length z+

0 , and z+
0 = e−κb. The non-dimensional wall coordinate
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Figure 14. Snapshots of the instantaneous water surface elevation η (a, d), wave slope ηx

(x derivatives; b, e) and wave curvature in x (c, f ) at time (a–c) t =56 s and (d–f ) 69 s,
respectively.

z+ and velocity U+ are defined as zau
∗
a/νa and (Ua − Us)/u∗

a in the air and −zwu∗
w/νw

and (Us − Uw)/u∗
w in the water, respectively. Us is the mean velocity at the interface,

and Ua and Uw are the mean velocities in the air and in the water, respectively.
We compute the mean velocities by averaging the flow field in horizontal planes

at each time, and plot the time variation of these mean velocities in figure 15, along
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Figure 15. Mean profiles of the streamwise velocity of (a) the air and (b) water. The symbol
�, matched linear-logarithmic profiles at t =16 s; �, t = 70 s. The log-law constants used to
collapse the profiles (κ, z+

0 ) are (0.34, 0.31) and (0.33, 0.84) in the air and (κ, z+
0 ) are (0.3, 1.55)

and (0.37, 0.3) in the water at time t =16 s and 70 s, respectively.

with the theoretical profiles. Figure 15(a) shows that the simulated mean velocity
profiles in the air compare well with the theoretical two-layer velocity profile. When
surface waves are small (t < 50 s), the mean velocity profiles fit the same linear-
logarithmic profile. However, when surface waves become significant (t > 50 s), wave
motions change the mean velocity profiles, a systematic downward shift with time.
This downward shift in the air velocity profile is equivalent to an increase in surface
roughness z+

0 (figure 17f), as described in Sullivan, McWilliams & Melville (2004),
implying the enhancement of surface drag due to waves. The surface roughness z+

0 is
nearly constant ∼ 0.3 when t < 50 s and increases to about 0.95 when t ∼ 70 s. The
associated von Kármán constant used to fit the logarithmic profile is about 0.33 at all
time. Figure 15(b) shows the simulated mean velocity profiles and their associated two-
layer velocity profiles in the water. Not all profiles show the logarithmic distribution
and the von Kármán constant κ is changing with time, 0.22 <κ < 0.36 when t < 24 s
and 0.36 <κ < 0.44 when t > 24 s. (At t = 3 s, the flow in the water may be too viscous
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Figure 16. Vertical distributions of the normalized turbulent velocity variances of the air
(a, c) and of the water (b, d) at (a, b) early (t =16 s) and (c, d) later (t =66 s) stages. Note that
the horizontal scales in (b) and (d) are different.

as the mean wind profile is rather linear throughout.) The mean velocity profiles do
not undergo a systematic downward shift with time as in the air.

The wave effect on the turbulent velocity variances is also different in air and
water. Figure 16 shows the turbulent velocity variances at two stages: t = 16 s when
turbulence dominates (figure 16a, b); and t = 66 s when waves dominate (figure 16c, d).
In the air, the vertical distributions of the velocity variances (normalized by the
surface friction velocity) 〈u′2

i 〉(z)/(u∗
a)

2 are in close agreement with wall-bounded
shear turbulent flows (Kim et al. 1987; Aydin & Leutheusser 1991; Papavassiliou &
Hanratty 1997; Sullivan et al. 2000). There is no significant change between turbulence
and wave-dominated stages. In the water, our profiles at t = 16 s agree with the stress-
driven turbulent flow simulated by Tsai et al. (2005). However, at the stage when
waves become significant, the velocity variances in the water are strongly affected
by waves, particularly the w-component. The horizontal-velocity variances near the
interface also increase significantly owing to waves. Such an enhancement in the near-
surface turbulent velocity variances is attributed to the orbital motions of the
generated surface waves.
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6. Wave growth types
Previous theoretical studies suggest that wave growth processes can be separated

into linear and exponential growth stages and that the forcing mechanisms may
involve either turbulence-induced or wave-induced pressure and stress fluctuations.
The consensus is that in the linear growth stage, the wave-induced effects are ineffective
since wave motions are weak and thus turbulence plays a major role in generating
waves. In the exponential growth stage, wave-induced fluctuations of pressure and
stress dominate and result in a feedback mechanism to grow waves quickly. In this
study, we examine the wave growth processes in our simulated flow by classifying
the simulation into linear and exponential wave-growth stages using four features as
follows.

(i) The behaviour of pressure and shear stress fluctuations in the air is different
at early and later stages as described in § 3.2; they are turbulence dominated at the
early stage and wave dominated at the later stage. (ii) The time evolution of the root-

mean-square of water-surface elevation 〈η2〉1/2
(figure 17a) clearly shows slow growth

before t ∼ 40 s and fast growth after t ∼ 40 s. Other statistical quantities, such as the
mean surface current Us , the root-mean-square of pressure fluctuations 〈p′2

a 〉1/2
, the

root-mean-square of the interfacial shear-stress fluctuations 〈τ ′2
s 〉1/2

, the form stress Dp

and the surface roughness z+
0 (shown in figure 17b–f) also behave differently during

early and late stages of the wave growth. They are nearly constant before t ∼ 40 s and
then increase sharply with time. (iii) The individual wave components of the fastest
growing modes given in table 1 also reveal linear and exponential growth as shown
in figure 18 where the time evolutions of the wave amplitudes of the five fastest-
growing waves in linear coordinates for t < 16 s are shown in figure 18(a), and the
three fastest-growing waves in exponential coordinates for 40 < t < 68 s in figure 18(b).
They clearly reveal trends of linear and exponential growth for each wave mode at
the early and later stages, respectively. (iv) Each wave component of the form stress
also shows different behaviour at the early and later stages of wave growth. Here, we
define the dimensional form stress per unit area, Dp , of each wave component as

Dp =
1

LxLy

∫ Ly

0

∫ Lx

0

p′
a

(
∂η

∂x
+

∂η

∂y

)
dx dy. (6.1)

Again we plot the time evolution of Dp of the five largest waves in linear coordinates
for t < 16 s in figure 19(a) and the largest three waves in exponential coordinates
during 40 < t < 68 s in figure 19(b). The form stress is nearly zero when t < 16 s, but
increases exponentially with time when t > 40 s. Because the form stress oscillates
rapidly in the transition regime between 40 s and 50 s, we choose 0< t < 16 s as the
linear growth stage and 50 < t < 70 s as the exponential growth stage.

7. Comparison with wind-wave generation theories and measurements
7.1. Linear growth stage

Phillips (1957) proposed a theoretical model for wave generation and argued that
the turbulence-induced pressure fluctuations in the air are responsible for the birth
and early growth of waves. His theoretical model predicts that most of the growth of
waves occurs in the principal stage of development and the following expression for
linear growth:

〈ξ 2〉 ∼
〈
p′2

a

〉
2
√

2ρ2
wgUc

t, (7.1)
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Figure 17. Time evolution of interfacial parameters: (a) root-mean-square of water surface

elevation 〈η2〉1/2
, (b) mean surface current Us , (c) root-mean-square of pressure fluctuations

〈p′2
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, (d) root-mean-square of shear stress fluctuations 〈τ ′2
s 〉1/2

, (e) form stress Dp and (f)

surface roughness length z+
0 of the air.

where 〈ξ 2〉 is the mean square water-surface elevation, 〈p′2
a 〉 the mean square turbulent

pressure of the air at z =0, and Uc the convection speed of the near-surface pressure
fluctuations.

For the application of (7.1), Phillips (1957) stated that Uc is close to the mean
wind velocity at a certain height above the water surface; moreover, he proposed the
following relation between air friction velocity and convection speed

Uc ∼ 18u∗
a, (7.2)
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Figure 19. Time evolution of the form stress Dp for the same wave modes as those
shown in figure 18.

based on field measurements. By using this relation, we obtain a convection speed
Uc of about 162 cm s−1 (where u∗

a ∼ 9 cm s−1) which is close to the mean wind speed
in the simulated logarithmic layer where Ua ∼ 170 ± 20 cm s−1. Figure 20(a) compares
the mean square water-surface elevation from our simulation 〈η2〉 and the prediction
〈ξ 2〉 from (7.1). Our simulated growth rate is larger than the theoretical prediction
by a factor of about 1.5. The other three simulations shown in figure 20(b–d) will be
described in § 8.

7.2. Exponential growth stage

Many theories have been proposed to explain the exponential growth of wind-
generated surface waves. By examining the various processes that generate the
asymmetric pressure perturbation at the surface, Belcher & Hunt (1993) show that
the term induced by the thickening of the perturbed boundary layer on the leeside
of the wave crests, which is called the non-separated sheltering effect, dominates.
Furthermore, they relate the asymmetric effects to the drag force on the wave. When
the asymmetric effect grows with time, it also increases the form stress on waves. This
way, the form stress can play an important role in the exponential wave growth stage.
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(a) The control run with the height of the air domain h = 4 cm, (b) the run with no initial
turbulence in the water, (c) the run with no surface tension, and (d) the run with the height of
the air domain h = 8 cm. For the theoretical curves, Uc = 18u∗

a is used.

Here, we calculate the growth rate of our simulated waves and compare it to
measurements synthesized by Plant (1982) and to theoretical (Belcher & Hunt 1993;
Li 1995) and numerical studies that used a prescribed wavy surface (Sullivan &
McWilliams 2002). The wave growth rate is defined as

β∗ =
2

a

da

dt
=

1

E

dE

dt
, (7.3)
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where β∗ is dimensional wave growth rate, a is wave amplitude and E = 0.5ρwa2c2k

is wave energy density. Since the form stress dominates the contribution of energy
input from the perturbed air flow to surface waves, the dimensionless wave growth
rate β (where β = β∗/σ and σ is wave frequency) computed from the right-hand side
of (7.3) can also be expressed as (Li 1995)

β =
1

σE

dE

dt
=

2

ρw

Dp

(ak)2

(
1

c

)2

, (7.4)

where the relation between the rate of change of the wave energy, dE/dt , and the
form stress, Dp , is given as dE/dt = cDp . We compute the growth rates from (7.3)
and (7.4) and examine the contribution of form stress to wave growth. The one
computed directly from wave amplitude is used to verify the contribution of form
stress on wave growth. Figure 21(a) shows the time averaging (t = 56–70 s) of the
growth rates of the three fast-growing wave components from our simulation. The
growth rates calculated directly from the wave amplitude equation (7.3) (shown by
the cross symbols) and those computed from the form stress equation (7.4) (shown by
large triangle symbols) are similar to each other. For some wave modes the rates are
close to the measurements synthesized by Plant (1982) and the simulation results that
used a prescribed wavy surface from Li (1995) and Sullivan & McWilliams (2002),
but others are 2–3 times larger than the measurements and theoretical predictions.
The other three simulations shown in figure 21(b–d) are described in § 8.

The consistency of the growth rates calculated from wave amplitude and form
stress supports Belcher & Hunt’s (1993) argument that the form stress dominates the
contribution of energy input from air to waves at the exponential wave growth stage.

8. Sensitivity tests
To study other possible mechanisms that may influence the simulated wave growth

processes, we perform three sensitivity tests to examine the effects of turbulence in
the water, surface tension and different computational domain sizes.

The first sensitivity test was motivated by Teixeira & Belcher’s (2006) study.
Teixeira & Belcher developed an analytical model to test the influence of turbulence
in the air and in the water, separately, on surface wave growth. They suggested
that turbulence in the water may play an important role, more than that suggested
by Phillips (1957). To test their finding, we set up a simulation that consists of no
turbulence in the water at the beginning of the simulation (that is, at our initialization
procedure described in § 2.5 we do not allow for turbulence in the water to spin up
before the interface starts to deform). Figure 20(b) compares its linear growth rate with
the theoretical prediction by Phillips (1957) and figure 21(b) compares its exponential
growth rate with measurements synthesized by Plant (1982). The linear growth rate
is similar to, but slightly larger than, that of the control run with turbulence in the
water to begin with (when we compare figures 20a and 20b). Figures 21(a) and 21(b)
indicate that with or without turbulence in the water there is no significant difference
in the exponential growth stage. Similarly to the control case, this case also shows
a wide spread of wave energy in the wavenumber space at the early stage (t = 16 s,
figure 22c), but then at the exponential growth stage (t = 66 s, figure 22d) energy
begins to concentrate on just a few dominant wave components and these dominant
waves have similar wavelengths as those found in the control case.

In the second sensitivity test, the surface tension in the interfacial boundary
condition equation (2.9) is set to zero. The computed linear growth rate (figure 20c) is
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Figure 21. Wave growth rates as a function of inverse wave age. Small symbols are results
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prescribed wavy surface (Li 1995; Sullivan & McWilliams 2002) as published in Sullivan &
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2

proposed by Plant (1982). The cross and large triangle symbols are our results calculated
directly from the growth of wave amplitude (7.3) and from the form stress (7.4), respectively,
for the three fast-growing wave components. The three fast-growing wave components are
(kx, ky) = (0.78, 0), (0.52, 0) and (0.78, 0.26) cm−1 for the control simulation (a); (0.52, 0),

(0.78, 0.26) and (0.52, 0.26) cm−1 for the simulation with no initial turbulence in the water
(b); (0.78, 0), (0.52, 0.26) and (0.52, 0) cm−1 for the simulation with no surface tension (c); and
(0.52, 0), (0.78, 0) and (0.78, 0.26) cm−1 for the simulation with larger air domain (d).

slightly higher than that of the control case with surface tension, but its exponential
growth rate (figure 21c) is similar to the previous runs. The distributions of
wave energy spectra (figure 22e, f ) also exhibit similar patterns to those from the
simulation with surface tension (figure 22a, d). Kundu (1990) suggests that waves with
wavelengths smaller than 0.4 cm are affected by the surface tension and waves larger
than 7 cm are dominated by gravity. According to Kundu (1990), we can categorize
waves into capillary waves (λ< 0.4 cm), gravity–capillary waves (λ= 0.4 ∼ 7 cm) and
gravity waves (λ> 7 cm). The waves we generated here have wavelengths ranging
between 8 and 10 cm, which belong to gravity waves. Furthermore, during this initial
growth stage (before the interface of the coupled model becomes too nonlinear), we
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Figure 22. Spectra of water surface elevation η̂(kx, ky) (normalized by its total energy) at
time t =16 s (a, c, e, g) and t = 66 s (b, d, f, h) for (a, b) the control case; (c, d) the simulation
without turbulence in the water at the beginning of the simulation; (e, f ) the simulation
without surface tension at the interface; and (g, h) the simulation doubling the height of the
computational domain of the air.

did not observe any small capillary waves embedded on the long gravity waves in the
simulations with surface tension. Thus, whether there is surface tension or not makes
no significant difference to the wave growth we study here.
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Figure 23. Snapshot of the water surface elevation at t = 64 s. This simulation is the same
as the control run except that it uses a larger horizontal domain of Lx = Ly =48 cm. The
wavelength in the streamwise direction is similar to that found in figure 5(c). The time period
of this simulation run is nearly 65 s.

For the third sensitivity test, we perform several simulations with different domain
sizes to see whether the dominated waves stay the same. First, we double the domain
height of the air to ha =8 cm while keeping vertical resolution and horizontal domain
the same. The linear wave growth rate is similar to that of the control run (figures 20a
vs. 20d) and comparable to the theoretical predication of Phillips (1957). However,
the wave growth rates at the exponential growth stage, shown as the cross and large
triangle symbols in figure 21(d), are slightly larger than the other simulations and
also larger than theoretical predictions. Nevertheless, the wave energy spectra (fig-
ure 22g, h) look similar to those of the previous three cases. We also change the
size of the horizontal domain to Lx = Ly = 48 cm while keeping the same horizontal
resolution as the control run. Figure 23 shows a snapshot of the water-surface
elevations at t = 64 s; the wavelength of dominant waves is also about 8–12 cm, which
is similar to the control run. Some other runs with domain sizes of Lx =Ly = 12, 16, 20
and 36 cm also reveal similar results (not shown here). Hence, we conclude that the
horizontal domain of the model does not influence the wavelength of the dominated
waves excited by the wind in our simulations, and the choice of the domain size for
simulations is not an important factor to influence wind-wave generation processes.

9. Conclusions
The initial wind-wave generation processes consist of linear and exponential growth

stages as proposed by theoretical studies and supported by some laboratory and field
measurements, but these processes have never been studied by numerical simulation
before. In this study, we developed an air–water coupled model where the continuity
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of velocity and stress is satisfied at the interface, so it can simulate the interaction of
two fully developed turbulent layers (air and water) above and below the interface.
The limitation of our coupled model is the linearization of the interfacial boundary
conditions and hence the model is applicable only to small-amplitude waves.

The characteristics of simulated waves are similar to field and laboratory
observation at the initial stage of wind-wave generation. The wavelength of the
dominated waves is about 8 cm which is in the range of wind-induced gravity waves.
The corresponding wave age c/u∗

a ∼ 5 belongs to ‘young sea’ or ‘slow moving waves’.
At the early stage of wave growth, the turbulent flow structures in the air (and in the

water) remain similar to shear-driven turbulent flows over a flat surface (and under
a flat free surface). At the later stage of our simulation, waves grow exponentially
and the flow fields are strongly influenced by wave motions. The effects of flow fields
by waves are summarized as follows. (i) The streaky structure, which is a typical
phenomenon of shear-driven turbulent flow, is interrupted by wave motions and
the streamwise velocity field forms a pocket-like feature. (ii) The flow field over the
whole water domain is strongly affected by the waves at the later stage. This effect
is evidenced from the iso-surface of vertical velocity, the vertical profiles of the mean
velocity and turbulence intensity. (iii) Wave effects to the velocity field in the air are
confined only in the thin viscous sublayer. The turbulence intensity of the air does
not change significantly owing to waves. (iv) The pressure field in the air behaves
differently at the early and later stages. At the early stage, the pressure fluctuations
of the air are mainly turbulence-induced and advect faster than the phase velocity of
waves. At the later stage, the air pressure fluctuations become waveform throughout
the turbulent layer and move along with the surface waves.

Similar to the theoretical studies, our simulated waves can be separated into linear
and exponential growth stages as distinguished by the following flow behaviours:
(i) the behaviour of pressure fluctuations of the air (which are considered to be the
main factor that is available to initiate and support wave motion); (ii) the simulated
interfacial properties; (iii) the growth trend, and (iv) the magnitude of the form stress
(which is considered to be the main contributor of energy transfer from wind to
waves at the exponential growth stage).

We compared our growth rates to theoretical predictions, field and laboratory
measurements, or other numerical simulations that used a prescribed wavy surface.
At the linear growth stage, the theoretical prediction from Phillips’ (1957) wind-wave
generation mechanism is examined. Our wave growth rates are about 1–2 times larger
than the theoretical prediction. At the exponential growth stage, our wave growth is
consistent with Belcher & Hunt’s (1993) non-separated sheltering mechanism because
our c/u∗ < 5. However, the growth rates computed from our simulated waves are
somewhat larger (by a factor of about 2) than those obtained from measurements
(Plant 1982), simulations that used a prescribed wavy surface (Sullivan & McWilliams
2002; Li 1995) and Belcher & Hunt’s (1993) theoretical prediction.
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